and 3000 IU of vitamin D per day. Maintenance therapy includes 2000 IU of vitamin D per day. The aim of study was to assess the efficacy and safety of individual targeted vitamin D therapy in postmenopausal women with primary osteoarthritis. The study involved 40 postmenopausal women aged 46–87 years. All subjects were subdivided into two groups: main – 20 women who took individual targeted vitamin D therapy (20 subjects, 65.1 ± 8.8 years old, BMI 27.22 ± 4.51 kg/m²) and control (20 subjects, 64.5 ± 11.1 years old, BMI 26.68 ± 4.95 kg/m²). The duration of the treatment consists of 3 mos. 25(OH)D total and iPTH levels were assessed by electrochemiluminescent method using Elesys 2010 analytical system (Roche Diagnostics, Germany) and test-systems cobas. The serum levels of calcium, phosphor, alkaline phosphatase levels were evaluated for safety reasons. In 3 mos after the start of the treatment there was a significant (p < 0.001) increase in 25(OH)D levels in the treatment group: 35.60 ± 8.21 nmol/L as compared to baseline levels of 25.20 ± 9.76 nmol/L. Remarkably, the treatment was effective in the oldest subgroup (>70 yrs.), as well as in subjects with the BMI 25–28.99 kg/m². The major finding of the present study is that the individual targeted vitamin D therapy was proven to be effective in postmenopausal women with primary osteoarthritis. As the treatment turned out to be effective, relatively quick, and had a reasonable safety profile.

http://dx.doi.org/10.1016/j.maturitas.2015.02.346

P206
Impact on the somatic variation and body composition in women of middle age with food supplement OBEX

Consuelo Prado 1,∗, Dolores Marrodan 2, Blanca R. Manzano 3, Margarita Carmenate 4

1 Universidad Autónoma de Madrid, Departamento de Biología, Madrid, Spain
2 Universidad Complutense, Zoología y Antropología, Madrid, Spain
3 Universidad de Ciencias Médicas de La Habana, Facultad Fajardo, La Habana, Cuba
4 Universidad Autónoma de Madrid, Biología, Madrid, Spain

The climacteric transition affects a change in body composition and weight status. This change can be modulated according with lifestyle and nutrition.

The objective of the study is to know the somatic situation of perimenopausal Spanish women analyzing emerging risks and their improvement following a program of education in the habits of life and it plus a new food supplement (OBEX, Catalysis laboratory).

Madrid Pilot, double-blinded randomized trial study, on 100 women (35–60 years). Sample was aleatory divided: 50 product and 50 placebo. With three controls initial, at the end of treatment and after two months end of treatment. Inclusion criteria: BMI between 27 and 35, without gastric reduction surgery, liver or kidney diseases, untreated to weight lost and non-pregnant. Women evaluation include: anthropometric characteristics, body composition, blood pressure, lipids and glucose. Participants did not follow any diet.

Has been a discreet weight reduction in both groups, with a decrease of the fatty component of 1%. However have shown significant differences between controls and product-level lean mass, with a gain of 0.51 g of muscle in the treated group (p < 0.03); that also had higher levels of tissue hydration (p < 0.01) not to alter the values of bone mass. The constant analyzed blood indicate a significant reduction in the levels of glucose (p < 0.02), not modifying the levels of lipids, also there is difference of somatic predisposition indicative morbid as the reduced on average two cm waist circumference (p < 0.002). Skinfold thickness reduction observed in both groups of women more important in women with OBEX. Only in postmenopausal women whist the OBEX treatment shows the reduction in subcutaneous fat accumulation, not occurring this in the postmenopausal control group (p = 0.004). After two months without OBEX, women have not shown any rebound effect.

These results show a improve in metabolism, somatic and body composition.

http://dx.doi.org/10.1016/j.maturitas.2015.02.347

Epidemiology

P207
Somatometric and clinical cardiovascular risk factors in midlife and older women. A tale of four European countries

Antonio Cano 1,2,3,∗, Carol Holland 4,5, Joan Vila-Francés 6, Boukouvalas Alexis 4, Brown James 3,4, Ana Castro 1, Emilio Soria-Olivas 5, Nadine Correia Santos 3,6, Pedro Cunha 6, Nuno Sousa 6, Matthew D. O’Connell 7,7, Joanne Feeney 7,8, Rose Anne Kenny 7

1 Hospital Clínico Universitario, Valencia, Spain
2 University of Valencia, Valencia, Spain
3 European Innovation Partnership for Active and Healthy Ageing, ELPAHA, The European Commission, Brussels, Belgium
4 Aston Research Centre for Healthy Ageing, Aston University, Birmingham, United Kingdom
5 IDAL, Intelligent Data Analysis Laboratory, University of Valencia, Valencia, Spain
6 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
7 The Irish Longitudinal Study on Ageing, Trinity College, Dublin, Ireland
8 Queen’s University, Belfast, United Kingdom

Introduction: Cardiovascular disease (CVD) ranks first as responsible of morbidity and mortality in European women. Despite so, Europe constitutes a heterogeneous entity, with considerable differences in the risk for CVD between regions. It is therefore interesting exploring established cardiovascular risk factors in different European areas.

Objective: To explore the distribution of some basic cardiovascular risk factors along age in midlife and older women from UK, Ireland, Portugal and Spain.

Methods: Somatometric parameters, blood pressure, and the lipidogram were examined in 1674 women from the English Longitudinal Study of Ageing (ELSA), 3184 from the Irish Longitudinal Study on Ageing (TILDA), 563 from the Switchbox (UMinho cohort, Portugal), and 1236 from the Chronic Ailment Reduction after Study on Ageing (TILDA), 67.2 ± 9.4 in ELSA, 63.0 ± 9.4 in TILDA, 67.2 ± 9.2 in Portugal, and 53.7 ± 7.4 years in CARMEN (mean ± SD in all cases). Contrary to data from other databases, there was not a clear worsening of the lipidogram with age. Total cholesterol was higher in UK and Spain. The UK values were influenced by the highest levels of HDL among the four countries. Accordingly, the ratio cholesterol/HDL was lowest for Ireland.